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Research on the topological indices based on eccentricity of vertices  of a molecular graph has been intensively rising 
recently. Eccentric connectivity index, one of the best-known topological index in chemical graph theory, is belonging to this 
class of indices. In this paper, we introduce a  novel topological index based on the eccentricity of vertices and its basic 
features are presented here. We named it as reverse  eccentric connectivity index( REEC).  
 
(Received December 27, 2011; accepted June 6, 2012) 

 

Keywords: Eccentricity, Tree, Eccentric connectivity index, Reverse eccentric connectivity index 

 

 

 

1. Introduction 
 
Molecular descriptors are playing significant role in 

chemistry, pharmacology, etc. Among them, topological 
indices have a prominent place [1]. There are numerous of 
topological descriptors that have found some applications 
in therotical chemistry, especially in QSPR/QSAR 
research. The eccentric connectivity index of the 
molecular graph G, ( )c G , was proposed by Sharma, 
Goswami and Madan [2]. It is defined as;  
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where ( )d v denotes the degree of the vertex v  in G and 

( ) max{ ( , ) | ( )}v d u v u V G    denotes the 
eccentricity of the vertex v. The eccentric connectivity 
index  has been employed successfully for the 
development of numerous mathematical models for the 
prediction of biological activities of diverse nature [3-10]. 
Recently a number of papers have appeared about 
mathematical properties of this topological index (for 
example see [11,12] and references cited therein). 
Recently, a novel graph invariant for predicting biological 
and physical properties – eccentric distance sum was 
introduced by Gupta, Singh and Madan [13]. It has a vast 
potential in structure activity/property relationships. The 
authors [13] have shown that some structure activity and 
quantitative structure-property studies using eccentric 
distance sum were better than the corresponding values 
obtained using the Wiener index [14], defined as; 
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where ( )D v  denotes the sum of all distances from v .  

The eccentric distance sum of G ( EDS ) is defined as; 
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For mathematical properties of this topological index  

see [15,16]. 

Here, we are proposing a new index which belonging 

to this class of topological 

indices. It is defined as follows: 
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where  summation goes over all vertices of graph G, ( )v  
denotes the eccentricity of the vertex v and ( )S v  is the 
sum of degrees of all vertices  adjacent to vertex v. This 
index is named as reverse eccentric connectivity index ( 
REEC ),

RE c . In the following sections, predictive power 
of REEC index will be discussed as well as its some basic 
mathematical properties. 
 

 

2. Reverse  eccentric connectivity index as  
    possible tool for QSPR/QSAR research 
 
In order to investigate predictive power of reverse  

eccentric connectivity  index 
RE c   we used octanes and 

some of their physico-chemical properties as resource. We 
found experimental results at the 
www.moleculardescriptors.eu. The following physico-
chemical properties have been modeled: 
  Entropy ( S ) 
  Enthalpy of vaporization (HVAP) 
  Standard enthalpy of vaporization (DHVAP) 
  Acentric factor (AcenFac) 
and results are compared with those obtained using the 
well-known Eccentric connectivity index. We chose those 
physico-chemical properties for which Reverse  eccentric 
connectivity  index (REEC)  and Eccentric connectivity 
index (ECC)  give reasonably good correlations, i.e. 
correlation coefficients are larger than 0.88. In the Table 1 
are depicted graphs that show correlations between 
Reverse eccentric connectivity index (REEC) and 
Eccentric connectivity  index (ECC)  on one  hand and 
above-mentioned properties on the other. From depicted 
graphs, it is not obvious which index gives better results. 

http://www.moleculardescriptors.eu/
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Therefore, we conducted a simple statistical analysis to 
compare Reverse eccentric connectivity index (REEC) and 

Eccentric connectivity  index(ECC) . Results are presented 
in Table 2.  
 

 

Table 1. Graphs showing correlation between some phyisico-chemical properties and Reverse  eccentric 

connectivity index (REEC)  and Eccentric connectivity  index (ECC) respectively. 
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Table 2.  Correlation coefficients and ratio of quadratic mean of 

residuals for graphs depicted in Table 1. 

 

                                                                              

Correlation coefficient (R)          1-RQR( % ) 

                                                                               REEC 

index         ECC index 

Entropy ( S ) 0,915 0,864 10,7 

Enthalpy of vaporization 

( HVAP ) 

0,880 0,723 10,1 

Standard enthalpy of 

vaporization ( DHVAP ) 

0,925 0,803 10,8 

Acentric factor 

(AcenFac) 

0,953 0,943 10,2 

 

It can be seen from data for correlation coefficient (R) 

(Table2) that in all cases Reverse  eccentric connectivity 

index  gives somewhat better results. Apparently, a 

superficial glance on the correlation coefficients do not 

show strong justification for introducing a new  index, 

because correlation coefficients that we obtain in the case 

of Reverse eccentric connectivity index are not 

significantly better than those obtained using Eccentric 

connectivity  index. However, predicting power of a new 

index is reasonable and that can be seen from the ratio of 

quadratic mean of residuals (RQR): 
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One should observe that in all  cases, the prediction 

power of Reverse  eccentric connectivity   index is at least 

for 10.1% better than prediction power of Eccentric 

connectivity index. The greatest improvement in 

prediction  with Reverse  eccentric connectivity index 

comparing to Eccentric connectivity index is obtained in 

the case of standard enthalpy of vaporization (10.8%). 

That is why we believe that Reverse eccentric connectivity 

index (REEC) should be considered in the future 

QSPR/QSAR researches. 

 

 

3. Lower and upper bounds of Reverse   
    eccentric connectivity index for general  
    graphs and chemical graphs 
 

In this section are given some basic mathematical 

features of Reverse eccentric connectivity index. For 

special classes of graphs we compute  the following useful 

values for our parameter, using from definition. 

 

 
2

( ) .
1

RE c

n

n
K

n
 


 

 

,

2( )
( ) .

.

RE c

m n

m n
K

m n





 
 

For the star, cycle and path of order n, 
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Fig. 1. The graphs Pn   and its vertices’ eccentricities 

when  n is even. 

 

Theorem 1 Let G be a simple connected  graph with n 

( 4)n  vertices, then  
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Lower bound is achieved if and only if G is an 

complete graph and upper bound is achieved if and only if  

G is a path. 

Proof It is obvius that the only graph with its diameter 

d=1 and the sum ( )S v  equals its maximum is a complete 

graph. We can directly write from the definition of the 

Reverse eccentric connectivity index for n vertex complete 

graph nK  in which its vertex set is {1,2,..., }V n ; 
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Again the only graph with n vertices has maximum 

eccentricity or diameter n-1  and the sum ( )S v  equals its 

minimum is a path. For n is even from the definiton we 

can write; 
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           And this completes the proof (See Fig. 1). If n is 

odd the proof made similarly.                                                          

Theorem 2 Let T be a tree with n  4n   vertices, then 

21 9 26 40
2 ( )

1 48

n n
REEC T

n

 
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
. 

 
Lower bound is achieved if and only if T is a star and 

upper bound is achieved if and only if T is a path. 

Proof   The upper bound follows from Theorem 1. Let us 

prove the lower bound. Notice that the only tree with the 

minimum eccentricity and the minimum sum ( )S v  is a 

star. Obviously for the central vertex v of any star 

( ) 1v   , ( ) 1S v n   and for other vertices u, 

( ) 2u  , ( ) 1S u n  . We can directly write from the 

definition of the Reverse eccentric connectivity index for n 

vertex star graph nS  in which its vertex set is 

{1,2,..., }V n ; 
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( ) 1 . 2

( ) 1 1 1n
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S n

S v n n n
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     

  
    It is 

clear that Theorem 2 holds  for chemical trees.                                                                                                               

Theorem 3  Let ( , )G V E  be a connected graph of 

order n, minimum degre  and diameter d . Then    ,

.
( )RE c n d
G


 .                  

Proof   Let the vertex set is ( ) {1,2,..., }V G n . From 

the definition of the Reverse eccentric connectivity index 

can be written for any connected graph G,  
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Theorem 4  Let ( , )G V E  be a k-regular graph of 

order n, radius r and diameter d .  Then,

2 2

. .
( )RE cn r n d
G

k k
   with equality from the both side if 

and only if  G  is a complete graph. 

Proof  Since the every vertex of V(G) adjacent to exactly k 

vertex and for any neighbouring vertex 
2( )S v k , the 

desired result is acquired from the definiton.         

 

 

 

 

 

 

 

 

 

4. Conclusion 
 

We proposed a new topological index based on 

eccentricity of vertices. It has been shown that  this index 

can be  used as predictive tool in QSPR/QSAR researches. 

Predictive power of this index has been tested on some 

physico-chemical properties of octanes. Obtained results 

show that it gives  better results comparing with well-

known Eccentric connectivity index. In addition, we 

analyzed some of its basic mathematical properties. It has 

been found a lower and upper bounds in the case of simple 

connected graphs and trees as well as in the case of 

chemical graphs and chemical trees. We also give lower 

and upper bounds for the Reverse eccentric connectivity 

index of connected graphs in terms of graph invariants 

such as the number of vertices ( n ), the radius  ( r ) , the 

diameter ( d ) and the minimum degree ( ).  
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